
FYI98 Trade Study from Code Y
GSFC Earth Science Technology Office

Using COTS Components for
Real-Time Processing of

SAR Systems

Charles Le and Scott Hensley

Final Report

Interferometric Algorithms and System Analysis Group
Radar Science and Engineering Section

Jet Propulsion Laboratory

Summary of Research Activities

The research activities are divided into three stages, with each stage lasting
approximately one month. In the first stage ', we discussed the design trade-off for real-
time SAR processing. The objectives are to maximize the processing density
(MFLOPS/volume, MFLOPVweight, MFLOPS/watt), to minimize the hardware cost
(MFLOPS/dollar), to minimize the software development cost, and to maximize software
generality. As an example, we briefly described the Mercury's RACEway
multicomputer as a low cost, high-performance, embedded heterogeneous message-
passing multicomputer system.

In the second stage 2, we presented a procedure to divide the SAR signal processing
into pipelined parallel steps that can be performed on a parallel computer. We also
estimated the throughput, memory, and 1/0 bandwidth requirements using the NASA/JPL
GeoSAR system. Using again the Mercury's RACEway multicomputer as an example,
we showed how to configure the hardware for SAR signal processing.

Parallel programming was the topic in this final stage '. First, we gave an overview
of the standard multicomputing platforms and parallel programming models. We then
compared and contrasted "scientific" versus "real-time" processing/programming. Next,
we showed the hardwarehofiware co-design approach for SAR signal processing. Then,
we discussed the current issues in parallel programming. Finally, we described a typical
software architecture for parallel programming of SAR signal processing.

2

Part I: The Design Trade-off for Real-Time SAR Processing

1. Introduction to Parallel Processing

Multiprocessing is necessary to meet the real-time demands, and/or high I/O data rate,
and/or computationally intensive algorithms, typically found in radar/sonar systems.
The four key issues in large multiprocessor systems are architecture, communication
efficiency, reliability, and ease of use '. Usually, parallel architectures are characterized
by two general classes: shared-memory multiprocessors and message-passing
multicomputers '. The main differences lie in the implementation of memory sharing
and interprocessor communication. In a shared-memory multiprocessor configuration,
all processors within the system have equal access to a shared-memory address space.
The interprocessor communication is achieved by modifying data in the shared-memory
address space. On the other hand, in the message-passing multicomputer architecture,
each compute node (CN) consists of a processor and its own local memory, unshared
with all other CN's. CN's are connected with each other via a common high-speed data
communication fabric or interconnection network. Processors communicate with each
other by passing messages through this interconnection network.

2. A Typical Example: The Mercury's RACEway Multicomputer

In recent years, Mercury Computer Systems, Inc. (MCSI) has emerged as one of the
leaders in the development and manufacturing of lower cost, high-performance,
embedded heterogeneous message-passing multicomputer systems. These parallel
systems address complex real-time applications requiring tremendous computational
throughputs (such as radadsonar processing, medical imaging, etc.). Its main
competitors include, but not limited to, Alacron, CSPI, and Sky Computers '. However,
MCSI's hardware systems dominate the radarhonar market in both military I g 9 a n d
commercial l o sectors. MCSI's RACE multicomputer provides a foundation for
parallel systems and offers a set of building blocks that provide upward scalability .
An example of high-level heterogeneous RACE multicomputer is shown in Fig. 1. The
system consists of programmable digital signal processors (DSPs), such as the Analog
Devices' SHARC chips; general-purpose reduced-instruction-set-computing (FUSC)
microprocessors, such as the Intel's i860, Motorola/IBMs PowerPC; application-
specific-integrated-circuit devices, such as Xilinx's field-programmable-gated-array
(FPGA) XC4000 series; I/O ports; and a network interface all connected via the
RACEway interconnection network. The RACEway interconnection network is the
framework used to provide high-performance communications among the interconnected
processors and devices. Each node in the multicomputer interfaces the network through
the RACE network chip (see Fig. 2). The network chip is the key to the high
performance and low cost of the RACE system. The network chip is a crossbar with 6
I/O channels consisting of 32 bit datapaths, and 8 bits of control and clocking. Each
channel is bi-directional. This device can handle three simultaneous transfers of 160
MB/s for a total of 489 MB/s, and can broadcast to 5 ports at 640 MB/s. The RACE

13 14

3

network can be configured into a wide variety of network topologies; however, the most
common configuration is a fat-tree architecture 13.

RACEway Interconnection Network

RISC I/O Network Memory
- DSP , Interface
-

VME Bus

I

PC1 Bus

Figure 1: The RACE Multicomputer l3

I RACEway Chip

c o c1 c2 c3

Parent Ports

Child Ports

Figure 2: The RACE network chip l3

4

3. Optimization Criteria for High-Performance Embedded Real-Time Systems

As stated in Section 1, the four principal design criteria are

0 Maximizing processing density (MFLOPS/volume, MFLOPS/weight, and

0 Minimizing hardware cost.
Minimizing software development cost (ease of programming).

0 Maximizing generality (easy reconfigurability and software portability).

MFLOPS/watt).

These conditions are usually in conflict with each other, and thus cannot be all met at the
same time. The system developer has to weigh each condition differently during the
course of his development process. The following subsections will discuss the design
trade-off imposed by these criteria.

3. I . Processing Density

No matter how fast a single processor is, typical radar/sonar systems need
multiple processors working together to satisfy the throughput requirements. If the
computing unit is carried in a limited enclosure (such as aircraft or spacecraft), or the
application has an embedded nature, the processing density is an important consideration.

Usually, DSPs are the processors of choice for embedded vector or image
processing-oriented applications (such as FFT, FIR filters, IIR filters, multirate filters,
adaptive filters, pulse compression filters, etc.), where high processing density (i.e.
MFLOPS/m3, MFLOPS/watt) is a primary consideration, or for other similar algorithms
that have a high data-to-computation ratio 1 5 . In general, the processing density of DSPs
is usually 5 to 10 times that of general-purpose microprocessors. For example, up to 12
SHARCs can be mounted on one 6U VME board as compared to only 4 i860s or 4
PowerPCs. On the other hand, RISC processors are suitable for high-performance scalar
processing applications that involve the execution of compiled C/FORTRAN codes with
low data-to-computation ratio. Also, RISC processors are more applicable where ease-
of-use is an important consideration. And finally, application-specific-integrated-circuits
(ASIC) devices (such as FFT, data compression, or reconfigurable processors) can offer
an order of magnitude throughput improvement for a specific algorithm compared to
programmable processors.

Hence, heterogeneous multicomputing, where more than one kind of processor
type are used, is preferred to optimally match different types of chips to different
computation stages of the application. A heterogeneous configuration that can leverage
DSPs, RISC microprocessors, and specialized processors optimizes the dataflow
throughput and leads to fewer overall processors. Smaller systems are not only less
expensive because they have fewer processors, but they also requires less hardware
infrastructure since they are easier to package, power, cool, and maintain. Optimal
configuration of a heterogeneous multicomputing system for minimum SWAP is the
main subject of the second stage of the research project.

5

3.2. Hardware Cost

Driven by profit, business decision places strong emphasis on this criterion.
However, it is less important during the development stage or in situation where large
production volume is not an issue. In a typical research establishment, system reliability
may be more relevant. Thus, the optimal system with respect to hardware cost depends
only on the budget for a specific project. Fortunately, use of COTS-based components
(almost) always ensure parts availability in a competitive market. Also, with a
heterogeneous system, system cost can be substantially reduced by matching the
processor type to the processing requirement.

3.3. Sofhvare Cost

This is the most important design criterion when developing a prototype or proof-
of-concept system. In these situations, the applications require only one working
prototype and a spare copy of such system. Most of the time will be spent on software
developing. Minimizing software cost leads to choosing the processors that are easy to
program, or have strong third-party support 16, or benefited from academia and federally
funded research 17 .

In the past, general-purpose microprocessors were the easiest to program due to
their available high-level language (such as FORTRAN or C) compiler. Programming
DSPs, on the other hand, was much harder, primarily through libraries and excruciatingly
tailored hand code. However, progress in the compiler and architecture has made it
possible for the DSP's applications to be written in a high-level language, and to allow
the compiler to do the fine-grain scheduling necessary to achieve available instruction
level parallelism l 8 19. All of the currently popular DSPs possess at least a C compiler
provided by their manufacturer. And most of DSP board vendors often include third-
party high-level language compiler and real-time-operating-system (RTOS) for their
boards.

If the application calls for a heterogeneous architecture, then interprocessor
communication becomes important. Here, an open software infrastructure is necessary to
enable seamless integration of different processor types, operating systems, and
application programming interfaces, allowing rapid response to new technologies and
application-specific software requirements. Development tools such as debuggers and
application building tools are also of importance.

3.4. System Generality

System generality refers to the openness of the hardware architecture, and the
ease with which different applications can be implemented on a given multicomputer.
Open hardware architecture reduces life-cycle costs by providing a standard platform for
future upgrades. Open and standard interfaces permit third-parties and end-users to add
their new and unique I/O and specialized processing elements for a wide range of
application requirements. COTS-based open-architecture multicomper systems can

6

rapidly adapt and evolve to new technology and requirements. The marketplace will
provide the best technology available on an open (and standard) system, thus extending
the useful life cycle of the systems for many years.

As already discussed in Section 4.3, an open software architecture is also
preferred so that software modifications or upgrades can be easily ported to a given
hardware system.

4. Summary

In this first part, we have presented and discussed the design trade-off one must face
when designing a real-time computing platform for SAR signal processing. Past
approach centered on choosing "the right processor". Advanced technology made it
possible for open heterogeneous COTS-based multicomputing systems that allow several
types of processors to work in parallel. The main idea is to optimally match each type of
processors to the computation stages where it can provide the best throughput. Coupled
with an open software infrastructure, these systems offer significant advantages and
reduce overall system cost.

7

Part 11: Pipelined Parallel Architecture for SAR Processor

1. Introduction

In this part, we present a procedure to divide the SAR signal processing into pipelined
parallel steps that can be performed on a parallel computer. We also estimate the
through ut, memory, and I/O bandwidth requirements using the NASNJPL GeoSAR
system . Using again the Mercury's RACEway multicomputer l 4 as an example,
we show how to configure the hardware for SAR signal processing.

Yo 21 22

SAR is a radar imaging technique aiming at providing two-dimensional high-quality
high-resolution images for terrain mapping at target imaging. Applications of SAR in the
military consist of intelligent gathering, battle field reconnaissance, land mine detection,
and weapon guidance. Civilian applications include topographic mapping, surface
deformation monitoring and analysis, oil spill monitoring, ocean and sea ice
characterization and tracking, agriculture and urban classification and assessment, land
use monitoring, planetary exploration, etc.

One of the many challenges in SAR is the huge amount of computations required in
several SAR correlation algorithms, such as the range-Doppler algorithm, step-transform
processing, deramp compression processing, polar processing, a-k algorithm, etc. .
This reference also gives an overview of many SAR correlation architectures that have
been considered or implemented in the past. One should however note that these
hardware platforms have been designed in the mid- or late eighties. Since then, dramatic
advances in VLSI technology have made possible the stringent requirements that seemed
insurmountable only ten years ago. Also, substantial investment in advanced
reconnaissance technology from the Department of Defense (DoD) and the Defense
Advanced Research Projects Agency (DARPA) through such ro rams as COTS
and RASSP 1 7 , have led to many radar processing systems 7, 1 1 , p2, ''> 27 &at provide high-
performance, while offering small size, light weight, and low cost for expendable aircraft
mission 9, 28. It is our intention, in this research project, to benefit from these previous
investments and to consider the resulting advanced technology for civilian use, such as in
the GeoSAR program

23

24, 25

2. General Description of SAR Signal Processing

GeoSAR 21 is a congressionally-mandated DARPA-funded project to develop a dual
frequency airborne interferometric mapping radar. The overall goals of the project are to

0 develop precision foliage penetration mapping technology based upon dual

provide military and civilian users with significant increase in mapping

0 produce true ground surface digital elevation models suitable for military and

frequency interferometric radar

technology

civilian applications

8

The project duration is 3 years, starting November 1, 1996. The system is expected to be
operational in November 1999. Table 1 gives the definitions and values of the radar
parameters and Table 2 shows the processor parameters.

Table 1: Radar parameters

Table 2: Processor parameters

Figure 1 shows the block diagram of the GeoSAR range-Doppler signal processing and
Figure 2 gives the numbers of floating-point operations per input sample at each
processing stage

9

Signal Input

w Fix-to-Float

Digital I/Q
(real-to-complex)
I

ii Range FFT

1 + Range Compression

I Range FFT" I

6 Presum

a Mocomp

L J

Corner Turn

Azimuth FFT

Range Migration

Azimuth Compression

I Azimuth FFT" I .
Detection

(magnitude squared) 1 r
4 Image Output

Figure 1: SAR signal processing

10

Range Ref. Func. Mult = 6- Nr
Pr

Mocomp = 6 N J l
NS

Nrv
NS

Corner Turn = 10-

Azimuth FFT = [5%1%2 Nu)- Nrv
Ns

Range Migration = 6-- Nu Nrv Il

Pa Ns
Nu Nrv Azimuth Ref. Func. Mult. = 6--
Pa Ns

Azimuth FFT' = [5 2 log2 Nu)- Nrv
NS

Nrv
NS

Detection = 3-

Figure 2: Number of FLOPs per input sample

1 1

3. Parallel of SAR Signal Processing

Ma

T 1

As shown in Figs. 1 and 2, the range-Doppler SAR algorithm can be separated into
sequential stages. Hence, the processing can be pipelined to improve the throughput. In
addition, multiprocessors can be employed in each stage to obtain a further throughput
increase. Fig. 3 shows a possible parallel mechanism for SAR processing.

1 b Ns

range samples

1 . M,

pulse number

Ranpe Processing Azimuth Processing

Figure 3: Parallelization of SAR Processing

The range compression can be performed independently of the pulse number. In this first
stage of the pipeline chain, multiple processors (PI, P2, . .. , P,) can work in parallel to
perform the range compression, with each processor responsible for a set of pulse returns.
Similarly, the azimuth compression of different range samples can be performed
independently of the range cells. Hence, another set of multiple processors (PI, P2, . . .,
P,), distributed across the range samples, could be assigned to work in parallel. Between
the two compressions in the range and cross-range directions, data needs to be "corner-
turned". In this intermediate step, data are transferred from range buffer memory to
azimuth buffer memory, and then (matrix) transposed.

12

4. Processing Requirement

4.1. Throughput and Memory Trade-Oflfor Overlap-Save Convolution

Because of the long data record, the convolutiodcorrelation operations are best
performed with the overlap-save technique. Given the chirp reference length M,, there
exists an optimum FFT section length P, to minimize the FFT computational load.

FLOPS per Input Sample for M, =7200
I I

\
\

I

I I

5 10 If
Section Length Relative to M, (Pfl,)

Figure 3: FFT computation load as function of section length

Figure 3 shows the FLOP per input sample as a function of the section length P, for the
FFT operation. Since the minimum region is very flat, it is better to choose the smallest
section length P, in this region to minimize the amount of memory buffer required. This
is very important for azimuth processing when it is shown that the azimuth memory
buffer dominates the total system required memory.

4.2. Total Computational Load

The computational load at each stage is the number of FLOP required for that stage
multiplied by the corresponding sample rate. The SAR signal processing can be divided
into three main stages: range compression, presumming and motion compensation, and

13

corner turn and azimuth compression. The sample rate during the range compression step
is given by

After pulse compression, there are only N, good samples. Hence, the sample rate for the
subsequent computations is

The computational loads for the three stages are

Caz =QrVG[l l io (l0 log2 Nu +6+611)+13
N s Pa 1

We recall from Tabs. 1 and 2 that, except for P, which is the software parameter all the
remaining parameters in the above equations are actual radar parameters, fixed at the
radar system design level. As discussed in the previous section, P, is the parameter that
controls the trade-off between throughput and memory requirements. Since the lengths
of the range and azimuth reference functions are long for GeoSAR system (in the order of
8K to 16K), a 50% overlap in the overlap-save convolution operation (corresponding to
P, = M, and P, = Ma) is chosen to minimize the amount of memory required.

The number of samples per pulse N, and the radar PWfP are inversely proportional to the
range resolution &, and the azimuth resolution &,, respectively

where gr and g, are the range and azimuth oversampling factors, respectively. Hence, the
processing load, in general, increases inversely with the square of the image resolution.

14

4.3. Memory Requirements

Each range compression processing element (PE) requires both an input and output
double buffer, each of length 2Ns complex samples. If there are P, range processors, then
the total range memory required is 4P,.Ns complex samples. Azimuth processing requires
a corner-turning double buffer in addition to the output image buffer for a total of
(2+1)N,.,,Mu = 3 N,.,,Ma. Since the azimuth reference length Mu is on the order of 1,000
(X-band) to 20,000 (P-band), and the number of range processors is much smaller (in the
order of 10 to loo), the total memory requirement are dominated by the azimuth
processing. Assuming 8 bytes per complex sample, the total memory required is

Since

the total memory required is inversely proportional to the cube of the resolution.

5. Mapping SAR Signal Processing into a COTS-Based Parallel Computer: An
Example with GeoSAR using Mercury's SHARC DSP Daughter Cards

Mapping a signal processing application into a COTS-based computer consists of
determining the total throughput (GFLOPS), the number of processors, the amount of
memory (MB), and inter-processor data communication bandwidth (MB).

6.1. Total Throughput and Number of Processors Required

For the GeoSAR radar and processor parameters given in Figures 1 and 2, the
throughputs measured in GFLOPS (number of giga floating-point operations per second)
are shown in Table 3

Range
Throughput Compression Mocomp Compression

Total Azimuth P r e s d

X-band
3.12 1.07 0.25 1.8 P-band
2.91 0.86 0.25 1.8

Table 3: GeoSAR signal processing throughput

15

The total throughput gives only an estimate of the total computations required for
the application. However, not all FLOPS are created equal. This means that a given
processor performs some operations faster than other operations. For example, Table 4
shows the throughput of a DSP board consisting of Analog Devices' SHARC chips, for
the operations relevant to SAR signal processing 28

Operation Throughput (MFLOPS)
Magnitude Squared

Fixed-to-Float / Float-to-Fixed
45 FIR Filter
27 Complex Multiplication
26

94 Fast Convolution
80 Corner Turn
80

Table 4: Equivalent FLOPS for SHARC-based DSP

To determine the number of PES required, we need to
1. determine the equivalent throughput of the selected PE type (SHARC,

TMS320Cx, PowerPC, i860, ...) for each operation, i.e. the processor's
benchmark.

2. determine the FLOPS required for each operation in the pipelined processing.
3. divide step 2. by step 1. to get the number of PE required for each operation.
4. add the results of step 3. to get the total number of PE required.

Tables 5 and 6 show the procedure highlighted above for the GeoSAR X-band and P-
band radars, respectively. The main difference between the two systems, for processing
purposes, lies in the different azimuth reference lengths due to different radar center
frequencies. A processing margin of 30% has been assumed for other unaccounted
calculations. We note from these two tables that the range compression requires more
processing elements than the azimuth Compression, which also includes the corner-turn
operation.

6.2. Memory Requirement

The memory requirements for the range and azimuth processors are shown in Table 7.
The required memory for range compression is quite modest compared to the azimuth
compression. A 50% saving in azimuth memory can be obtained if one stores the range
compressed data in a fixed-point format at the expenses of dynamic range29 and
throughput, since data needs to be converted back to floating-point format after corner-
turned for subsequent azimuth processing.

6.3. 1/0 Bandwidth Requirement

Assuming 8 bytes per complex sample, the total I/O bandwidth rate in the pipeline chain
(range compression, corner turn, and azimuth compression) is just 8 4 . The 110

16

-
(GFLOPS) (MFLOPS) - PES

Range Processing
Fast Convolution

0.24 Presum+MocomP
94 19.15 1.8
27 8.99

Operations I FLOPS required I SHARC

Add

Total PE, required
8.44 +30%overhead

28.14 2.04

37

Azimuth Processing
Corner Turn 0.025 80 0.32
Range Migration

0.29 26 0.008 Magnitude
6.24 94 0.59 Fast Convolution
8.99 27 0.24

Add 0.86 15.84
+ 30 YO overhead

21 Total PE,, required
4.75

Table 5: Number of processing elements (PES) for X-band GeoSAR

Operations

I Fast Convolution
Presum+Mocomp

I Add

c Corner Turn
Range Migration
Fast Convolution
Magnitude

Table 6: Number of processing elements (PES) for P-band GeoSAR

17

Formula

0.64 MB 0.64 MB 32 N, Per Processor
18 MB 18 MB 32 N, PE, Total

Range Processing
P-band X-band

Azimuth Processing
Total 4955 MB 310 MB 24 N,M,

I I I

Per Processor I 24 N,.,,M,/ PE, I 20 MB 275 MB
. . ..

Table 7: Memory requirements

bandwidth per processor is twice (input + output) the total I/O rate divided by the number
of processing elements in each pipeline stage. Table 8 shows the results. These I/O
requirements are well below today's advanced VME/PCI buses that can sustain data rate
well above 160 MB/s 9, 30.

Formula I/O Bandwidth (MB/s)
Total

2.4 16Q / PE, Per Azimuth Processor
1.4 164 / PE, Per Range Processor
51 8Q

Table 8: I/O bandwidth requirement

6. Approach for Optimal Hardware Configuration

The range compression is characterized by a low memory-to-processor ratio (1 8 MB
divided by 37 PE,) whereas the azimuth compression has a very high memory-to-
processor ratio (3 10 -- 4955 MB divided by 24 PE,). A custom-designed DSP board can
produce any desired memory-to-processor ratio. However, this approach is time-
consuming and fairly expensive. Also, custom-built board is not flexible in the sense that
it is designed for specific requirements. If any of these requirements changes in future
time (i.e. frequency, bandwidth, pulse width, swath width, flying altitude, etc.) leading to
new memory-to-processor requirements, new boards need to be fabricated. Or the whole
processing system may become inefficient, and even obsolete. These drawbacks lead to
more frequent use of COTS-based products (i.e. commercially available in a competitive
market), that contain a wide range of memory-to-processor ratios. The optimal hardware
configuration consists of choosing the optimal mix of these COTS-based DSP boards to

' meet the throughput and memory requirements, and at the same time satisfying the
maximum size, weight, and power (SWAP) constraints. As discussed in the first report,
the host system must be standard and open to ensure easy insertion and rapid prototyping
of hardware and software components. Only in this case, can hardware configuration
using COTS-based components make sense and deliver the optimum solution.

1s

6.1, Choice of Objective Function

In airborne and spaceborn missions, all SWAP constraints are important. For
computation processing purposes, the power requirement is the most important
parameter. The weight of a computer system is determined by the custom-built chassis.
The size of the system depends on the processing density of the processing elements and
on the geometry by which they are arranged. However, power consumption is by far the
fundamental variable to be minimized.

6.2. Mercury's COTS -Bused Daughter Curds

To quantify the hardware design, we consider as examples the following specifications
for four Mercury Computer's SHARC daughter cards 31. Each daughtercard has six
SHARC processors with two independent compute nodes (CN) of three processors each.
Each CN on the daughtercard has 8, 16, 32 or 64 MB of DRAM that is shared by both
CN's processors.

S2T8B-D S2T64B-D S2T32B-D S2T16B-D
Configurations:
Compute Nodes (CNs) 2 2 2 2

Data Transfer Rates:
DRAM (MB/s) 320

Specifications:
ElectricaYMechanical

53.3 53.3 53.3 53.3 Per SHARC, average (MB/s)
320 320 320 320 SHARC buses, shared (MB/s)
320 320 320

Power (watts) 14 14 14 14
Weight (pounds) .4 .4

5" x 4.435" 5" x 4.435" 5" x 4.435" 5" x 4.435" Dimensions
.4 .4

Table 9: Mercury% SHARC daughtercard specifications.

19

6.3. Choices of Hardware Configuration

There are three possible hardware configurations. In the first choice, only one type of
daughtercards is chosen so that the available processors and memory are shared by both
range and azimuth processing. From Tables 5 and 6 , the number of range processors is
about twice that of azimuth processors. Since each CN has three SHARCs, one SHARC
can be assigned to the range processing while the remaining two perform the azimuth
processing. For the X-band system, the 64 MB of memory on the S2T64B-D (21.3 MB
per SHARC) satisfy the total memory required for these three range and azimuth
processors. However, none of these cards meets the very high memory-to-processor
requirement (85 MB per processor) for the P-band radar. In this case, some remote
memory access is required, thus raising the throughput and power consumption.

Since the memory-to-processor requirements are different for the range and
azimuth processors, it is possible to assign two different card types to each of the range
and azimuth processing. The range (or azimuth) processing will have all the available
SHARC processors (3) and memory on each CN for its own use.

Lastly, in situation where there is a large disproportion between the numbers of
range and azimuth processors, we can combine the two previous approaches. The 'first
set of CNs is shared between the range and azimuth processing. The remaining set is
exclusively devoted to the processing stage that requires more processors.

The last step is to find the total power consumption as a function of the type and
number of daughtercards used in the configuration. This power consumption is also a
function of any software parameter in the SAR signal processing (for example, the FFT
section lengths). The objective is to minimize this power consumption subject to the
number of processors and memory required.

In summary, the time-consuming and expensive problem of custom-designed board is
reduced to simple optimization calculation. The availability of different DSP boards in a
competitive market leads to great system flexibility. Use of COTS-based components
would ensure that these objectives could be met successfully.

7. Summary

In this second we have shown the steps in designing a COTS-based parallel computer for
real-time SAR signal processing. Using the NASNJPL-developed GeoSAR system as an
example and the Mercury Computer System's SHARC daughtercards as a typical
hardware platform, we have provided the calculations of the resource requirements
(number of processors and memory), and different choices of hardware configuration for
minimum power.

20

Part 111: Parallel Programming Issues

1. Introduction

Parallel programming is the topic in this third and final part. First, we give an
overview of the standard multicomputing platforms and parallel programming models.
Then, we compare and contrast "scientific1' versus "real-time" processing/programming.
Next, we show the hardware/software co-design approach for SAR signal processing.
Then, we discuss the current issues in parallel programming. Finally, we describe a
typical software architecture for parallel programming of SAR signal processing.

2. Review of Standard Multicomputing Platforms

Scalable parallel computer systems are classified into five general models 32 as shown in
Figure 1 : the parallel vector processors (PVPs), the symmetric multiprocessors (SMPs),
the massively parallel processors (MPPs), the distributed shared-memory
multiprocessors (DSMs), and the cluster of workstations (COWS). The important
characteristics of these systems consist of:

Commodity components: using commercial-off-the-shelf (COTS) microprocessors,
memory, disks, and software.
Multiple-instruction-multiple-data (MIMD) architecture: the application program is
divided into processes, each running a possibly different subprogram on different
processor.
Asynchrony: each process executes at its own pace. Synchronization is maintained
through the use of semaphores, barriers, sockets, threads, blocking-mode
communications, etc.
Distributed memory: memory is physically distributed among different compute
nodes (CNS), either shared or unshared. Memory access is carried out using uniform-
memory-access (UMA) or non-uniform-memory-access (NUMA) models. Because
of its centralized shared memory, the UMA model may limit scalability once built.

Table 1 compares the architectural attributes and performance of these five parallel
architectures.

21

.............

1 Crossbar Switch

pq pq JSMI
(1) Parallel Vector Processor

I '

MB

I I

Custom-Designed Network

(3) Massively Para .le1 Processor

............. FP P p/c p/c p/c

I Busand Switch I

(2) Symmetric Multiprocessor

MB
- P/C

- L M I

MB .

HEI

Custom-Designed Network

(4) Distributed Shared Memory
J

DIR: cache directory
LM: local memory

I I I

COTS Network (Ethernet, ATM, etc.) I
(4) Cluster of Workstations

MB: memory bus
NIC: network interface circuitry
PIC: microprocessor and cache
SM: shared memory
VP: vector processor

Figure 1: Computer Architectures of Scalable Parallel Computers 32

22

I Attribute 1 PVP I SMP DSM MPP cow

Example
systems

Typical
Usage

Processor type

Memory model

Address mace
Access model

Interconnect

Scalability
Performance/
Cost Ratio

system

Custom COTS COTS
vector- Microprocessor Microprocessor
processor
Centralize Centralized Distributed
shared shared shared
Single Single Single
UMA UMA NUMA
Custom Bus or Custom
crossbar crossbar network

Medium
Low Low High High High

High

Table 1: Architectural attributes of MIMD parallel computers

3. Review of Standard Parallel Programming Models

Table 2 lists the four parallel programming models: implicit, data parallel, message-
passing, and shared-variable models 33. Implicit model lets the compiler and the run-
time support system exploit the program parallelism. The remaining three programming
models are explicit models where the user explicitly specifies in the source code the
program parallelism. This can be achieved by using three realization approaches: library
subroutines (additional library to support parallelism and interaction operations), new
constructs (the programming language is extended with new constructs to support
parallelism and interaction), and compiler directives (formatted comments to help the
compiler in optimization and parallelization). The table also shows existing software
products together with the targeted hardware platforms. The remaining entries focus on
various parallel programming issues (****: most favorable, *: weakest). Parallelism
issues concern process creatiodtermination, context switching, number of processes.
Interaction issues involve data and workload allocation, and processor synchronization
and communication. Semantic issues affect termination, determinacy, and correctness
properties. And programmability issues refers to code efficiency and portability.

23

Platform Independent Examples

Forge I I Fortran 200 1 MPI, MPI-2 POSIX Threads

PC++. Nesl
HPF, HPF-2 OpenMP

A I I

Platform Dependent Examples Convex CM C* IBM SP2, Cray MPP,
Exemdar Intel Paragon SGI Power C

Table 2: Comparison of four parallel programming models 33.

Table 3 further classifies the explicit programming models based on their architectures
and working principles. Further information can be found in the references . 32,33

Feature
P

Control Flow
(threading)

Synchrony

Address Space
Interaction

Data Allocation

H Data Parallel Message Passing Shared Variable I
]/Single 1 Multiple I Multiple

Loosely
synchronous
Single

Implicit or
Explicit Explicit Implicit
Multiple Multiple

Explicit
Semi-explicit Semi-explicit

Asynchronous Asynchronous

Implicit or

Table 3: Main features of explicit parallel programming models 33.

4. Comparison between "Scientific" and Real-Time'' Computing

Traditional supercomputers (PVP, SMP, MPP) with general-purpose computinf design
philosophy have served well the scientific and business computing markets . In
contrast, embedded systems are often found in real-time, sensor-based, signal and image
processing applications. The fundamental characteristics separating the two applications

3 , 35

24

are: application flow, deterministic requirements, support for heterogeneity, and hardware
utilization requirements 34.

In scientific applications data are given just once as an initial value problem and
evolve according to a scientific model. Each evolution step involves different and
complicate operations and is subjective to change with respect to the previous steps,
depending on the data runtime value.

In real-time, sensor-based applications, the execution process is divided into two
phases: SETUP and GO phases. During the SETUP phase, the software performs
functions with high level of latency and low level of determinism, such as shared
memory creation, processors hiring, task partitioning and scheduling, initialization of
parallel libraries, and establishing of processor communicatiodsynchronization. Thanks
to the regularity of the processing during the GO phase, this SETUP procedure is
performed only once and the entire subsequent processing can be completely planned
ahead. That is, the processing regularity permits static task mapping and scheduling (i.e.
task mapping and scheduling are determined at compile time). This is in contrast to
scientific programming where dynamic task profiling and scheduling are required.

The software then gives way in the GO phase where the hardware takes over and
manages the data movement and transformation. During this time, the sensor
continuously delivers data, probably at a high rate, to be processed. However, the
processing is relatively simple (FFT, filtering, etc.), repetitive, and predictable. That is,
data value do not dictate what the application should do, as with scientific application
that decides which conditional branch to process based on data values in the previous
steps. Thus real-time sensor-based applications require quick and deterministic
performance. What separate real-time programming from scientific programming are
high data refreshing rate, its passive nature, and the processing regularity.

As mentioned previously, real-time applications require uninterrupted data collection
and continuously concurrent processing of data. These requirements lead to high demand
for deterministic control, high-speed processing, and efficient communication and
synchronization mechanism. In addition, real-time embedded systems require extremely
high hardware utilization (optimal use of resource) in terms of performance (MFLOPS)
per cubic foot, per pound, per watt, and per dollar. This implies maximal hardware fine
tuning and minimal software overhead. Thus, both hardware and software latencies must
not only be low, but also deterministic in order to keep up with the continuous data
stream.

To meet the high hardware utilization, embedded real-time applications are best
served by a heterogeneous mix of processors 36. For example, custom processors can be
used for low latency I/O interfaces and FFT calculations. DSP chips are ideal for vector
tasks, such as digital filtering, image formation, data reconstruction and resampling, and
signal classification. And FUSC can be employed to perform scalar task, such as feature
extraction, inverse problem, parameter retrieval, image classification and interpretation,

25

large scale (global) surveying and understanding, target detection, and decision making
processes.

In general, there are three types of heterogeneous computing (HC) models: mixed-
machine model, mixed-mode model, and mixed-component model 37. In a mixed-
machine system, a heterogeneous mix of independent machines of different types are
interconnected by a high-speed network (e.g. crossbar switch, SCI, HiPPI, Myrinet, fiber
channel, gigabit Ethernet, etc. 33). A mixed-mode system has a single parallel machine
whose processors are capable of operating in either the synchronous SIMD or
asynchronous MIMD mode, and can dynamically switch between these two modes. A
mixed-component system consists of a machine with different components where each
represents one mode of parallelism.

5. Heterogeneous Multicomputing for SAR Real-time Processing

SAR signal processing (filtering, image formation, detection, classification, etc.) usually
involves different types of computation (vector and scalar processing) ’. Consequently
the correspondin signal processing architecture is best served with a mix of computing
technologies 361 Homogeneous machines, where only one type of microprocessor is
employed, cannot achieve their peak performance during the entire process. This is due
the fact that different algorithms within the SAR signal processing have different
computational requirements. And currently there is no single microprocessor architecture
that can serve all computational requirements equally well 3 6 e To meet the high
throughput and low latency requirements, real-time SAR signal processing calls for
heterogeneous platform where each processor is tailored to match with the type of
computation for which it was designed

8

38,39,40,41

Figure 2 shows the software domain (computational model) and hardware domain
(hardware realization) for real-time SAR signal processing using a heterogeneous
multicomputing platform. The actual parallel implementation is a parallel pipelined
system where each pipeline is a collection of tasks and each task itself is parallelized.
This helps in improving throughput and latency, whose definition and discussion will be
given in the subsequent sections.

In the first stage, the sensors deliver analog data to be digitized by the I/O device (e.g.
A/D converter). The digital data are then compressed (filtered, convolved, etc.) to form
image. While this stage is highly computationally intensive, the processing can be
separated (pipelined) into well-defined vector subtasks (range compression, corner
turning, azimuth compression, etc.) where multiple processors can be employed in
parallel. Also, these filtering operations are very regular, repetitive, and require
minimum software conditional branches. Hence, DSP chips are best suited for this
second stage. The third stage consists of image segmentation and feature extraction.
This stage is characterized by mixed vector and scalar operations, which can be
effectively performed with multiple microprocessor units running in parallel. The next
stage involves data interpretation and decision making. The processing is highly scalar in

26

A. PropramminP Model

Segment
Extract

B. Parallelizinp and Pipelininp the Filtering

C. Hardware Model

High-speed Buses or Switches 1
Figure 2: S A R signal processing on heterogeneous multicomputing platform.

nature, requiring complex software programming, and utilizing mostly conditionals, table
look-ups, jumps, for which RISC processors present better fits than DSP chips. Finally,
the processed data are stored on high-speed tapes or sent out to a display device. An VO
device is responsible for this bulk data movement.

6. Parallel Programming Issues

As described in the first two parts '* 2, COTS components offer many advantages in
terms of system scalability, programmability, flexibility, performance with respect to

27

size, weight, power, and cost. However, COTS components are not originally designed
to guarantee optimal performance for a particular application. Hardware integration
alone is not sufficient to meet the performance requirements.

To fully exploit the use of a heterogeneous mix of COTS components, software
programming tools such as high-level language, efficient parallel library, task profiling
and analytical benchmarking, task mapping and scheduling, supporting compiler and
operating system mechanisms, should be available to the programmers. Currently,
parallel programming techni ue is not advanced enough to permit automation of task
mapping and scheduling 33, . The user must explicitly decompose the application into
appropriate subtasks, decide on which machine to execute each subtask, code each
subtask specifically for its targeted machine, and determine the relative execution
schedule for the subtasks. However, full automation is an active research topic both in
academia and industry.

9

7.1. Communication time

In an integrated system which implements several tasks that feed data to each other,
each tasks takes some amount of time that equals to the sum of 42

0 Time required to transfer the input data from the previous task.
0 Time required to process the data.
0 Time required transfer the output data to the next task.

Therefore, in addition to the processing time, communication time (between the
processing units, between the processing unit and its on-chip memory, between the
processing unit and the bulk memory storage) is also needed among the tasks.
Experience over the years has shown that processor speed is increasing at a faster rate
than the speed increase of memory and interconnect network 33 . In fact, communication
time is the major overhead that can adversely impact scalability when mapping an
embedded signal processing application onto a high-performance computing platform 39.

There are two types of data dependencies that can affect the communication time:
spatial and temporal data dependency. Spatial data dependency is classified into intra-
task and inter-task dependencies. Intra-task dependency occurs when subtasks are
exchanging intermediate results (i.e. overlap-add and overlap-save convolution). Inter-
task dependency results from data movement between parallel tasks (i.e. pulse
compression followed by azimuth compression). Temporal dependency arises when
previous data set is needed for the current process. Good understanding of the data flow
and efficient data re-distribution and task scheduling is required in order to meet the
performance requirement.

7.2. Throughput and Latency

While other parameters such as size, weight, power, and cost impose constraints on
the hardwarehoftware architecture, two of the most important parameters that need to be

28

optimized are throughput and latency . Throughput is the average rate at which
output sample leaves the system. The system throughput must keep pace with the input
data rate. Latency is the worst-case time between the transform of an input sample and
the delivery of the processed output sample. The system latency is such that all the
processing must be done within an assigned time. The throughputllatency optimization
problem consists of minimizing the number of processors needed to satisfy the
throughput requirement subject to the latency constraint. Numerous research studies
have been conducted and several models have been proposed to help minimize latency
and maximize throughput, for a given number of processors

39, 43

31, 39,43

7. Typical Software Architecture for SAR Real-Time Signal Processing

In this section, we provide an example of a typical parallel software structure. The
example shown below represents the architecture designed for Mercury's RACEway
multicomputer 42. The process breaks down into SETUP code and GO code

SETUP Phase
Allocate local memory
Boot compute elements
Spawn processes
Create endpoints
Create transfer requests
Set up synchronization objects
Set up look-up tables

GO Phase (inner-loop functions)
while (is - data coming?)

Getdata in
Process data
Send data out

end while

The descriptions of the activities are given below.

7.1. SETUP Code

Allocating local memory: to allocate memory for function calls, to provide aligned
memory for special library calls, and to allocate on-chip memory on certain DSP
chips (such as the SHARCs).
Booting compute elements (CE): to load an executive into the targeted CE's
memory and to provide the physical address of the targeted CE in a interprocess
communication database.
Spawning processes: to load an executable image into the targeted CE's memory.

29

a

a

a

a

0

a

8.

Creating endpoints: to create endpoints which include shared memory buffer (SMB,
associated with random-access memory) and stream endpoints (associated with
devices).
Creating transfer requests: to define the source endpoint, the transfer engine, and
the destination endpoint for a particular transfer. Endpoints can be SMB or devices.
Transfer engine include direct memory access controller (DMA engine) and the DMA
engine for external devices.
Setting up synchronization objects: Standard synchronization objects include:
sockets, semaphores, and signals. Sockets provide full-duplex message passing
between processes. Semaphores are used for synchronization. And signals provide
asynchronous notification to processes.
Setting up look-up tables: to create look-up tables for frequent used functions and
transforms such as trigonometric functions and fast Fourier or discrete cosine
tranforms.

7.2. GO Codes (inner-loop processing)

Data transfer: data movement extensively used transfer requests previously created
in the SETUP phase. Data transfer can be between processes, between a process and
a logical device, and between a process and a raw device.
Processing data: inner-loop processing is usually performed with parallel library
functions that have been optimized for a targeted processor. Input data should reside
in local memory to reduce the communication time fiom reading external memory.

Summary

In this final part, we reviewed the standard multicomputing platforms and parallel
programming techniques. We then compared scientific programming and real-time
sensor-based processing where a heterogeneous system offers many advantages. We also
pointed out that parallel programming is not a mature technique and presents many
challenges. The ultimate goal is to provide full automation of the hardwarehoftware co-
design. Until this automatic tool is available, the hardware designer and software
programmer must explicitly specify the task partitioning and handle all the software
communicatiodsynchronization processes to ensure low latency and high throughput to
meet performance specifications.

30

REFERENCES:
1 C. Le and S. Hensley, "Using COTS components for real-time processing of SAR
systems", First Report, Jet Propulsion Laboratory, Pasadena, CAY July 1998.

2 C. Le and S. Hensley, "Using COTS components for real-time processing of SAR
systems", Second Report, Jet Propulsion Laboratory, Pasadena, CAY August 1998.

C. Le and S. Hensley, "Using COTS components for real-time processing of SAR
systems", Third Report, Jet Propulsion Laboratory, Pasadena, CA, September 1998.

4 R. Jaenicke, "Multiprocessing issues in large systems", Computer Design, pp. 51-53,
December 1996.

5 K. Hwang, Advance Computer Architecture: Parallelism, Scalability, Programmability,
McGraw-Hill, Inc., New York, NY, 1993.

J. Child, "PCI, VME boards vie for image processing designs", Computer Design, Pp.
91-97, April 1998.

L. Happ, F. Le, M. Ressler, and K. Kappra, Low-frequency ultra-wideband synthetic
aperture radar: Frequency subbanding for targets obscured by the ground", in Radar
Sensor Technology, G. S. Ustach, Editor, Proc. SPIE, vol. 2747, pp. 194-201, 1996.

* R. Dressler, D. Barnum, and M. Loiz, "COTS SAR processing software", IEEE
National Radar Conference, pp. 136-141 , 1996.

S. Ohr, "New-generation radar processing depends on fast A/D converters:, Computer
Design, pp. 85-90, August 1996.

l o R. W. Bayma and E. Trujillo, "HISAR COTS-based synthetic aperture radar",
Proceedings of the 15th IAANEEE Digital Avionics Systems Conference, pp. 3 19-325,
1996.

11 P. G. Meisl, M. R. Ito, and I. G. Cumming, "Parallel processors for synthetic aperture
radar imaging", Proceedings of the International Conference on Parallel Processing,
1996.

12 TNO Physics and Electronics Laboratory, "RACEway Compatible Pulse Compression
Board", http://www.tno.nl/instit/fel/div3/pulsbord.html.

l 3 B. C. Kuszmaul, "The RACE network architecture", Proceedings of the 9th
International Parallel Processing Symposium (IPPS'95), pp. 508-5 13, April 1995.

14 T. H. Einstein, "Mercury Computer Systems' modular heterogeneous RACE
multicomputer", Proceedings of the d h Heterogeneous Computing Workshop (HCW '99,
April 1997.

31

http://www.tno.nl/instit/fel/div3/pulsbord.html

15 J. M. Rabaey, W. Gass, R. Broderson, T. Nishitani, and T. Chen, "VLSI design and
implementation fuels the signal-processing revolution", IEEE Signal Processing
Magazine, vol. 15, no. 1, pp. 22-37, January 1998.

l6 3L Limited, "Parallel C and Multiprocessor DSP RTOS Software Solutions"

17 J. Gadient, and G. A. Frank, Editors, Rapid Prototyping of Application Specific Signal
Processors, M. A. Richards, A., Kluwer Academic Publishers, January 1997.

l 8 K. Konstantinides, "VLIW architectures for media processing", IEEE Signal
Processing Magazine, vol. 15, no. 2, pp. 16-19, January 1998.

l9 p. Faraboschi, G. Desoli, and J. A. Fisher, "The latest word in digital and media
processing", ", IEEE Signal Processing Magazine, vol. 15, no. 2, pp. 59-85, January
1998.

2o Van Zyl et. al., "GeoSAR P-band radar CDR", Jet Propulsion Laboratory, Pasadena,
CA, May 1997.

21 S. Hensley et. al., "GeoSAR IFSAR processor PDWCDR', Jet Propulsion Laboratory,
Pasadena, CA, September 1997.

22 Van Zyl et. al., "GeoSAR X-band radar CDR", Jet Propulsion Laboratory, Pasadena,
CA, November 1997.

23 J.C. Curlander and R.N. McDonough, Synthetic Aperture Radar: Systems and Signal
Processing, Wiley, 199 1 .

24 W. Owens, "Why COTS is vital to the modern military?", COTS! 95 Conference, 1995

25 R. Costello, "Commercial Products and Military Preparedness", COTS! 95 Conference,
1995.

26 D. MacDonald, J. Isenman, and J. Roman, "Radar detection of hidden targets",
NAECON 1997 Proceedings of the IEEE 1997 National Aerospace and Electronics
Conference, pp. 846-855, 1997.

27 R. W. Bayma and E. Trujillo, "HISAR COTS-based synthetic aperture radar",
Proceedings of the 15th IAALEEE Digital Avionics Systems Conference, pp. 319-325,
1996.

28 T. Einstein, "Realtime synthetic aperture radar processing on the RACE
Multicomputer", Application Note 203 .O, Mercury Computer Systems Inc., 1995.

29 P. Lapsley, J. Bier, A. Shoham, and E.A. Lee, DSP Processor Fundamentals:
Architectures and Features, IEEE Press, 1997.

32

30 J. Child, "PCI, VME boards vie for image processing designs", Computer Design, pp.
91-97, April 1998.

31 Race Series SHARC Daughtercards, Mercury Computer Systems Inc., 1998.

32 K. Hwang and Z. Xu, "Scalable parallel computers for real-time signal processing",
IEEE Signal Processing Magazine, pp. 50-66, July 1996.

33 K. Hwang and 2. Xu, Scalable Parallel Computing: Technology, Architecture, and
Programming, McGraw-Hill, 1998.

34 "Embedded applications for high performance computing", Panel Session, URL:
http://www. mc. com/backgrounder foldedembe

33

http://www

